80 research outputs found

    Real-time classification of multivariate olfaction data using spiking neural networks

    Get PDF
    Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an SNN-based solution for the classification of rank-order spiking patterns to provide continuous recognition results in real-time. The SNN classifier is deployed on a neuromorphic hardware system that enables massively parallel and low-power processing on incoming rank-order patterns. Offline learning is used to store the reference rank-order patterns, and an inbuilt nearest neighbor classification logic is applied by the neurons to provide recognition results. The proposed system was evaluated using two different datasets including rank-order spiking data from previously established olfactory systems. The continuous classification that was achieved required a maximum of 12.82% of the total pattern frame to provide 96.5% accuracy in identifying corresponding target gases. Recognition results were obtained at a nominal processing latency of 16ms for each incoming spike. In addition to the clear advantages in terms of real-time operation and robustness to inconsistent rank-orders, the SNN classifier can also detect anomalies in rank-order patterns arising due to drift in sensing arrays

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Participatory Development of a 3D Telemedicine system during Covid: the future of remote consultations

    Get PDF
    Background: The Covid pandemic brought the need for more realistic remote consultations into focus. 2D telemedicine solutions fail to replicate the fluency or authenticity of in-person consultations. This research reports on an international collaboration on the participatory development and first validated clinical use of a novel, real-time 360-degree 3D Telemedicine system worldwide. Development of the system - leveraging Microsoft's HoloportationTM communication technology – commenced at Canniesburn Plastic Surgery Unit, Glasgow in March 2020. Methods: Research followed VR CORE guidelines on development of Digital Health trials, placing patients at the heart of the development process. This consisted of three separate studies - a clinician feedback study (23 clinicians, Nov-Dec 2020), a patient feedback study (26 patients, Jul-Oct 2021), and a cohort study focusing on safety and reliability (40 patients, Oct 2021 - Mar 2022). “Lose, Keep and Change” feedback prompts were used to engage patients in the development process and guide incremental improvements. Results: Participatory testing demonstrated improved patient metrics with 3D in comparison to 2D Telemedicine, including validated measures of satisfaction (p<0.0001), realism or ‘presence’ (Single Item Presence scale, p<0.0001), and quality (Telehealth Usability Questionnaire, p=0.0002). Safety and clinical concordance (95%) of 3D Telemedicine with a face-to-face consultation were equivalent or exceeded estimates for 2D Telemedicine. Conclusions: One of the ultimate goals of telemedicine is for the quality of remote consultations to get closer to the experience of face-to-face consultations. These data provide the first evidence that HoloportationTM communication technology brings 3D telemedicine closer to this goal than a 2D equivalent

    Participatory development of a 3D telemedicine system during COVID : the future of remote consultations

    Get PDF
    The COVID pandemic brought the need for more realistic remote consultations into focus. 2D Telemedicine solutions fail to replicate the fluency or authenticity of in-person consultations. This research reports on an international collaboration on the participatory development and first validated clinical use of a novel, real-time 360-degree 3D Telemedicine system worldwide. The development of the system - leveraging Microsoft's Holoportation™ communication technology - commenced at the Canniesburn Plastic Surgery Unit, Glasgow, in March 2020. The research followed the VR CORE guidelines on the development of digital health trials, placing patients at the heart of the development process. This consisted of three separate studies - a clinician feedback study (23 clinicians, Nov-Dec 2020), a patient feedback study (26 patients, Jul-Oct 2021), and a cohort study focusing on safety and reliability (40 patients, Oct 2021-Mar 2022). "Lose, Keep, and Change" feedback prompts were used to engage patients in the development process and guide incremental improvements. Participatory testing demonstrated improved patient metrics with 3D in comparison to 2D Telemedicine, including validated measures of satisfaction (

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF

    The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors

    Get PDF
    corecore